
26    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

SYSADMIN

Software Testing for Sysadmin Programs
A D A M M O S K O W I T Z

Testing is a common practice in modern software development, but the
mere mention of it tends to raise hackles in the sysadmin community.
To me, this is disappointing because testing produces better code and

makes it easier to safely implement changes in your code. Too many articles
about testing just argue its merits or excoriate people who don’t use it, so
instead I’m going to show you how easy it is to start testing your code and
introduce you to a simple testing framework that is suitable for use with the
kinds of programs sysadmins tend to write.

Before I go any further, let me explain exactly what I mean by testing. Good programs include
defensive code—things like validating input, checking for errors, etc.; that is not testing.
Rather, testing is writing a separate program that exercises your “real” code and proves it
actually works. Typical test programs run your real program with a representative sample of
valid and invalid inputs and verify that the responses from your program are correct. By hav-
ing a separate program, you can make changes to your real code, and if all the tests still pass,
it’s likely that you didn’t break anything.

System Administration Meets Software Development
Infrastructure as Code. You’ve all heard it before, and you probably have an idea of what
it means. To me, one aspect of Infrastructure as Code is bringing the discipline of software
engineering to bear on system administration. Software engineering covers a lot of ground,
so let’s focus on just three practices used by software engineers: version control, code reviews,
and testing.

Pretty much everyone agrees version control is a good idea. You can use Git, Subversion,
Perforce, or something else—just pick one and use it; all of them are better than not using any
of them.

If you’re doing code reviews, great; if not, they’re trivial to start when you decide you’re ready.
I’m betting you can figure out how to do them without much help. You don’t need a tool to do
code reviews but using one can make the job easier. I like the tool ReviewBoard [4] but, again,
there are plenty of other good tools.

Testing is where it gets interesting. Some of you may be testing your Puppet modules and
Chef recipes, but what about all those other programs you wind up writing; do you write tests
for those? To quote Yosemite Sam, “Dem’s fight’n words!” Over the years, I’ve seen more and
more sysadmins embrace the idea of using version control, and some are slowly embracing
code reviews, but testing still seems to meet plenty of resistance.

As a software developer, my day looks something like this: Pick a task off the backlog (typi-
cally a task that needs to be automated), write some code and some tests (in either order or
in parallel), keep working at it until the task is completed and all the tests pass, then submit
a code review. Assuming my reviewer(s) liked what I wrote, I commit the code into our ver-
sion control system. For the past year I’ve been writing most of my code in Groovy [2], using

Adam Moskowitz is a Senior
Tools Engineer at MathWorks
and was the program chair of
the LISA 2009 conference.
Since entering the field in

1978, he has been a computer operator (what
sysadmins were called in The Good Old
Days), an application developer, a system
administrator, and a teacher of all of those
things. At MathWorks he is building a system
to manage VMs in both production and
ephemeral testing environments (and quietly
take over the world). When he’s not writing
code, you will find him judging barbecue
contests or riding a tandem bicycle with his
wife. adamm@menlo.com

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  27

SYSADMIN
Software Testing for Sysadmin Programs

Maven [3] to build my projects, and testing everything with
Spock [5]; these were chosen as standards for my group before I
was hired, and so far I haven’t had any reason to change. All that
was fine until one day I had to write a very “sysadmin-y” pro-
gram in Bash, and the person reviewing my code said, “Where
are your tests?”

Now, at my company, code reviews are pretty much required,
but as the developer I have the option of choosing which changes
requested by the reviewer I implement, including not implement-
ing any at all. I would have been on solid ground to have said
something like “No one writes unit tests for shell programs” or
“It’s too hard to write tests for shell,” but that just didn’t feel right
to me. “Would it really be that hard to come up with some mean-
ingful tests for this shell script?” I asked myself. I couldn’t shake
the feeling that I could come up with something that wouldn’t
feel like Rube Goldberg invented it, so I decided to spend a few
hours on the problem.

By the end of the day I had enough of a skeleton developed that I
believed I had found a viable solution; by the end of the next day
I had a fully fleshed-out system, and the next morning (48 hours
after the first code review), I submitted a second review with
the comment, “Full tests for the Bash code are now included.”
Because I’m lucky enough to have time to take small detours
when I find something that may be useful for my colleagues, I
took a third day to build an example Bash program and set of
tests to see just how far I could reduce the framework code. In
the end I got it down to 57 lines and a very simple directory hier-
archy. I’ll show it to you in just a moment.

Arguments Against Software Testing
The most common reasons I’ve heard for not doing software
testing fall into one of the following categories:

◆◆ Test harnesses are too hard to understand and too difficult to
set up.

◆◆ It’s too hard to test the kind of programs I write.

◆◆ It takes too much time.

Rather than get all preachy about it, I’m going to take the rest of
this article to show you a technique I’ve been using for the past
year that I believe will address at least the first two objections;
I’ll deal with the third objection later. Let’s get to it, shall we?

Introducing a Testing Framework
There are more unit test frameworks than I can count. The
Wikipedia article lists over 400 of them; Java alone has 35 dif-
ferent frameworks; Perl, Python, Ruby, and even Shell each have
around eight. No wonder folks don’t know where to start. As I
wrote above, my solution is based on Groovy (which requires the
Java JDK), Maven, and Spock; all are quite powerful and, in their

full depth, are somewhat complicated, but I’m going to stick to a
very small subset to keep things simple.

The setup is trivially easy: download the Java JDK gzipped tar
file, unpack it somewhere (I like /opt/<thing>-<version> but
you can do this all in $HOME if you prefer), make an optional
symbolic link, and add one environment variable to your pre-
ferred shell’s start-up file. Repeat for Groovy (a zip file) and
Maven (requires two environment variables). When you’re done,
update your path. That’s it: no installing dozens of packages, no
dependency hell, no spending hours getting lots of little pieces
all in the right places. The first time you test a program, Maven
will automatically download Spock for you. A full set of detailed
instructions can be found on my Web site [1].

The next step is to lay out your program source code, your test
code, and tie it all together with a Maven pom.xml file. There’s a
link to these steps at [1], so I’ll just show you what files go where:

-rw-r--r-- example/pom.xml

-rwxr-xr-x example/src/main/bash/example

drwxr-xr-x example/src/main/resources

-rw-r--r-- example/src/test/groovy/Test_example.groovy

drwxr-xr-x example/src/test/resources

The file example/src/main/bash/example contains the program
to be tested, and example/src/test/groovy/Test_example.

groovy contains the test code; the former is written in Bash, the
latter in Groovy. The two resource directories are there to keep
Maven from complaining that they don’t exist.

“Wait, Groovy?!?! I have to learn yet another programming lan-
guage? Is this guy for real?” Please, there’s no need to shout. No,
you don’t have to learn a new language, just a few constructs, and
most of those are identical to Perl (which you probably already
know); I’ll give you enough examples of the new bits that I’m bet-
ting you’ll be able to pick it up with very little work.

Here’s our example program:

#!/bin/bash

if [$1 = yes] ; then

 echo hello, world

 exit 0

else

 echo goodbye, cruel world 1>&2

 exit 1

fi

As you can see it doesn’t do anything useful, but it does just
enough to let me demonstrate the three most basic Spock tests:
testing the exit value of a program, examining standard out, and
examining standard error. Here’s the file example/src/test/

groovy/Test_example.groovy:

28    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

SYSADMIN
Software Testing for Sysadmin Programs

1 package com.menlo.example

2

3 import spock.lang.*

4

5 class Test_example extends Specification {

6 static String here = System.getProperty(“user.dir”)

7 static String prog = “${here}/src/main/bash/example”

8

9 def “exits with 0”() {

10 when:

11 Process p = “${prog} yes”.execute()

12 p.waitFor()

13

14 then:

15 p.exitValue() == 0

16 p.text.contains(“hello, world”)

17 }

18

19 def “exits with 1”() {

20 when:

21 Process p = “${prog} no”.execute()

22 p.waitFor()

23

24 then:

25 p.exitValue() == 1

26 p.err.text.contains(“goodbye, cruel world”)

27 }

28 } // Test_example

For now, skip over lines 1–8; I’ll cover them in the next para-
graph. The first test is lines 9–17: line 10 defines the “stimulus”
block, and line 14 defines the “response” block; that is, “given cer-
tain actions, confirm that certain results are true.” In this case,
run our program with the argument “yes” (line 11), then check
that the exit value is zero (line 15) and that we get “hello, world”
on standard out (line 16); you can ignore line 12 even though it’s
required. The second test (lines 19–27) is nearly identical to the
first, the main difference being that we examine standard error
instead of standard out (line 26).

For our purposes, that is, when testing programs written in any-
thing other than Java or Groovy, lines 1–5 don’t matter as long
as they exist; it won’t hurt anything if they’re identical for every
test file you ever write. Lines 6 and 7 define two variables that let
us find our Bash program in a portable way; in other test files the
only thing you’ll need to change is example in line 7 to the name
of the program being tested. (Obviously, if you’re testing a Perl
program, you’ll also need to change bash to perl.)

To run the tests, just type mvn test and watch a few hundred
lines of output go scrolling by; don’t try to read it all, the impor-
tant bits will be at the very end. You should see lines that look
like this:

Running com.menlo.example.Test_example

. . .

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

. . .

[INFO] BUILD SUCCESS

What I haven’t shown you, and what I’m going to ask you to take
on faith, is how Maven knows what to do. It’s all contained in
the file pom.xml, and the example you can download from my
Web site has everything you need; there’s no need to modify the
file or even look inside it; just put a copy in the top directory of
each Maven project and you’ll be fine. My Web site also contains
a small shell script, new-testing-project, that will create new
Maven project directories for you, populate them with skeleton
files, and drop a fully formed pom.xml into place.

Testing Scripts
For this next bit, let’s agree to call the programs that sysad-
mins write “scripts,” only because it will provide a convenient
shorthand; also, let’s agree to call things like mount and ifconfig
“system programs,” again, for convenience.

One of the challenges with testing scripts is they often rely
heavily on system programs; a typical script takes an argument
or two from the command line, uses it to call a system program,
captures the output of that program, manipulates it, then passes
it to a second system program. Most of the tricky code in the
script is dedicated to parsing the output of the system programs,
trying to extract the desired pieces or detect an error. In many
cases, actually running the system programs is destructive or
produces an undesirable result, or there’s no easy way to cause
the system program to fail (so the script’s error-checking code
can be, um, checked). Fortunately, there’s a technique common
in modern software development that can be used, after a fash-
ion, for testing scripts as well; this technique is often known as
“mocks” or “stubs.”

USING MOCKS IN PLACE OF SYSTEM COMMANDS
The idea behind a mock is simple: rather than run /bin/mount,
we run our own private imitation of mount that emits whatever
output we need for our tests but doesn’t affect the state of the
system. Some scripts call system programs via an explicit path—
for example, /bin/mount -l -t ext3—instead of relying on mount
being somewhere in $PATH. There’s something to be said for that
style but it makes testing impossible. While you could depend on
$PATH, making sure to set it at the top of every script you write,
the alternative I prefer is to use variables for each system pro-
gram I call. By doing it like this:

MOUNT=${TESTBIN:-/bin}/mount

you’re still protected from an incorrectly set $PATH while, at the
same time, having the flexibility to run a mock during testing.

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  29

SYSADMIN
Software Testing for Sysadmin Programs

Here’s a second example that uses mocks:

-rw-r--r-- example2/pom.xml

-rwxr-xr-x example2/src/main/bash/example2

drwxr-xr-x example2/src/main/resources

-rw-r--r-- example2/src/test/groovy/Test_example2.groovy

drwxr-xr-x example2/src/test/resources

drwxr-xr-x example2/src/test/resources/bin

-rwxr-xr-x example2/src/test/resources/bin/mount

drwxr-xr-x example2/src/test/resources/data

-rw-r--r-- example2/src/test/resources/data/mount.error

-rw-r--r-- example2/src/test/resources/data/mount.single

-rw-r--r-- example2/src/test/resources/data/mount.separate

The files mount.single and mount.separate contain the output
from mount on systems with everything on a single partition and
with /, /home, /tmp, /usr, and /var on separate partitions.

Our mock mount command is trivially short:

#!/bin/bash

cat $MOCK_MOUNT_FILE

exit $MOCK_MOUNT_EXIT

Obviously, if your script calls mount more than once in a single
run, a more sophisticated mock is needed. Finally, here’s how we
tie all this together inside Test_example2.groovy:

package com.menlo.example2

import spock.lang.*

class Test_example2 extends Specification {

 static String here = System.getProperty(“user.dir”)

 static String bin = “${here}/src/test/resources/bin”

 static String data = “${here}/src/test/resources/data”

 static String prog = “${here}/src/main/bash/example2”

 static String wrapper = “${here}/target/example2”

 def “test all on one partition”() {

 setup:

 File f = new File(wrapper)

 f.delete() // make sure we start with a new file

 f << “#!/bin/bash\n”

 f << “export MOCK_MOUNT_FILE=${data}/mount.single\n”

 f << “export MOCK_MOUNT_EXIT=0\n”

 f << “export TESTBIN=${bin}\n”

 f << “${prog}\n”

 f.setExecutable(true, false)

 when:

 Process p = “${wrapper}”.execute()

 p.waitFor()

 then:

 // your tests here

 cleanup:

 assert new File(wrapper).delete()

 }

} // Test_example2

Each subsequent test would have to duplicate the setup and
cleanup stanzas, substituting values for MOCK_MOUNT_FILE and
MOCK_MOUNT_EXIT as appropriate.

You may have noticed the directory target in the definition of
wrapper; this is where Maven puts all temporary files. When
you’re done testing a particular script, run the command mvn

clean to clean up.

Mocks can be quite complicated, and I could probably fill an
entire article on how to get fancy with them; for now I think I’ve
left you with enough to get started.

“It Takes Too Long”
The last reason people give for not writing tests—“it takes too
much time”—is often the most difficult to respond to, but I hope
by now I’ve established enough credibility that you’ll at least read
my argument.

To me, testing is kind of like insurance: if you never need it
then the money you spend on it is “wasted,” but it takes only one
accident (or failure or whatever) for every dollar you’ve paid in
premiums to be returned ten-fold (or more). But software will
inevitably fail, and writing software is hard. There are far more
variables, edge cases, and unknowns involved in software than
any one person can understand, and even the best developers are
far from perfect. Put together, it’s not a question of whether any
given piece of software will fail but, rather, when it will fail and
how much damage the failure will cause.

Of course, tests are themselves software and thus will fail, but
my 30+ years of experience tells me that the time typically put
into writing tests catches at least 80% of the bugs; I also know
that writing tests makes you approach software development
differently and results in more correct (or, at least, more robust)
software. To me, producing better software far outweighs the
fact that testing is not a “silver bullet” and that your software
may still fail. In other words, apply the Pareto Principle (aka
“the 80-20 rule”) and avoid letting perfection get in the way of
improving your work.

The other big benefit to testing is that it lets you make changes
to your software; not only can you tell that the new code works,
you can be confident that you haven’t broken your old code. For
example, if you wrote a program to run under CentOS but now
want it to work on Ubuntu as well, you can run the tests to prove
it works on CentOS, modify the code, and add tests for Ubuntu.
Once the new stuff is working, go back and run the old tests on
CentOS to see that your program still works there.

30    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

So there you have it: I’ve shown you how to install and configure
a simple test harness, and how to write basic tests; I’ve given you
a brief introduction to mocks; and I’ve offered an argument to
justify spending the extra time to write tests for your programs.
Now it’s up to you to decide whether to apply what I’ve shown you
the next time you have to write a program as part of your job as a
system administrator.

Resources
[1] http://menlo.com/tdd4sa/.

[2] http://groovy.codehaus.org/.

[3] https://maven.apache.org/.

[4] https://www.reviewboard.org/.

[5] https://code.google.com/p/spock/.

XKCD

SYSADMIN
Software Testing for Sysadmin Programs

